Теория автоматического управления


         

плоскости корней служит границей устойчивости.




Рис.3.1

Мнимая ось
плоскости корней служит границей устойчивости. При этом можно выделить три случая выхода САУ на границу устойчивости, которые характеризуются соответственно:

1) нулевым корнем p1=0;

2) парой чисто мнимых корней


3) бесконечно удаленным корнем


Бесконечность на комплексной плоскости рассматривается как бесконечно удаленная точка, противоположная нулевой. Поэтому она тоже является границей между правой и левой полуплоскостями.

Вычисление корней весьма просто лишь для характеристического уравнения первой и второй степени. Но ведь для определения устойчивости не нужно знать абсолютное значение корней, необходимо знать лишь, в какой полуплоскости они находятся. Поэтому важное значение приобретают правила, позволяющие определять устойчивость системы без вычисления корней. Эти правила называют критериями устойчивости.

К основным критериям устойчивости относятся алгебраический критерий Гурвица и частотные критерии Михайлова и Найквиста.

К содержанию


Содержание  Назад  Вперед